Integrations Overview

AnyAPI seamlessly integrates with popular AI frameworks, development tools, and platforms to accelerate your AI development workflow. Our integrations provide native support, optimized configurations, and simplified authentication.

Available Integrations

Integration Benefits

Unified API Access

  • Single endpoint for multiple AI models
  • Consistent authentication across all services
  • Standardized response formats for easy parsing
  • Rate limiting and quotas managed automatically

Developer Experience

  • Native SDK support in popular programming languages
  • Framework-specific optimizations for better performance
  • Pre-built templates and starter projects
  • Comprehensive documentation and examples

Enterprise Features

  • SSO integration with popular identity providers
  • Audit logging and compliance tracking
  • Custom deployment options including on-premises
  • Priority support and dedicated account management

Quick Setup Guide

1. Get Your API Key

First, obtain your AnyAPI key from the dashboard:
export ANYAPI_KEY="your-api-key-here"

2. Choose Your Integration

Select the integration that best fits your workflow:
pip install litellm
from litellm import completion

response = completion(
    model="anyapi/gpt-4o",
    messages=[{"role": "user", "content": "Hello!"}],
    api_key=os.environ["ANYAPI_KEY"]
)

3. Test Your Connection

Verify the integration works:
# Test API connection
import requests

response = requests.post(
    "https://api.anyapi.ai/v1/chat/completions",
    headers={
        "Authorization": f"Bearer {os.environ['ANYAPI_KEY']}",
        "Content-Type": "application/json"
    },
    json={
        "model": "gpt-4o",
        "messages": [{"role": "user", "content": "Test connection"}]
    }
)

print("✅ Connection successful!" if response.status_code == 200 else "❌ Connection failed")

Integration Architecture

OpenAI-Compatible API

AnyAPI implements the OpenAI API specification, ensuring compatibility with existing tools:

Request Flow

  1. Authentication - API key validation and user identification
  2. Model Selection - Route request to appropriate model provider
  3. Processing - Execute request with optimized parameters
  4. Response - Return standardized response format
  5. Monitoring - Log usage and performance metrics

Supported Frameworks

LLM Frameworks

  • LangChain - Building applications with LLMs
  • LlamaIndex - Data framework for LLM applications
  • Haystack - End-to-end NLP framework
  • Semantic Kernel - Microsoft’s AI orchestration SDK

Development Tools

  • VS Code - Code editor with AI extensions
  • JetBrains IDEs - IntelliJ, PyCharm, WebStorm
  • Cursor - AI-first code editor
  • GitHub Copilot - AI pair programmer

Workflow Platforms

  • n8n - Workflow automation platform
  • Zapier - No-code automation
  • Jupyter - Interactive development environment
  • Streamlit - AI app deployment platform

Authentication Methods

API Key Authentication

Simple and secure API key authentication:
headers = {
    "Authorization": f"Bearer {api_key}",
    "Content-Type": "application/json"
}

Environment Variables

Recommended for production deployments:
# .env file
ANYAPI_KEY=your-api-key
ANYAPI_BASE_URL=https://api.anyapi.ai/v1

SDK Authentication

Language-specific SDK configurations:
from anyapi import AnyAPI

client = AnyAPI(api_key="your-key")
# or use environment variable
client = AnyAPI()  # reads ANYAPI_KEY

Configuration Best Practices

Environment Management

Use different configurations for different environments:
# config/development.yml
anyapi:
  base_url: https://api.anyapi.ai/v1
  timeout: 30
  retries: 3
  
# config/production.yml  
anyapi:
  base_url: https://api.anyapi.ai/v1
  timeout: 60
  retries: 5
  rate_limit: 1000

Error Handling

Implement robust error handling:
import anyapi
from anyapi.exceptions import APIError, RateLimitError

try:
    response = client.chat.completions.create(
        model="gpt-4o",
        messages=[{"role": "user", "content": "Hello"}]
    )
except RateLimitError:
    # Handle rate limiting
    time.sleep(60)
    retry_request()
except APIError as e:
    # Handle API errors
    logging.error(f"API error: {e.status_code} - {e.message}")
except Exception as e:
    # Handle unexpected errors
    logging.error(f"Unexpected error: {e}")

Monitoring and Logging

Track usage and performance:
import logging
from anyapi.middleware import LoggingMiddleware

# Configure logging
logging.basicConfig(level=logging.INFO)

# Add middleware for request/response logging
client = AnyAPI(
    api_key="your-key",
    middleware=[LoggingMiddleware()]
)

Migration Guides

From OpenAI

Migrate from OpenAI with minimal code changes:
# Before (OpenAI)
from openai import OpenAI
client = OpenAI(api_key="openai-key")

# After (AnyAPI)
from openai import OpenAI
client = OpenAI(
    api_key="anyapi-key",
    base_url="https://api.anyapi.ai/v1"
)

From Anthropic

Switch from Anthropic Claude:
# Before (Anthropic)
from anthropic import Anthropic
client = Anthropic(api_key="anthropic-key")

# After (AnyAPI)  
from openai import OpenAI
client = OpenAI(
    api_key="anyapi-key", 
    base_url="https://api.anyapi.ai/v1"
)

# Use Claude models
response = client.chat.completions.create(
    model="claude-3-5-sonnet",
    messages=[{"role": "user", "content": "Hello"}]
)

From Google AI

Migrate from Google’s AI services:
# Before (Google AI)
import google.generativeai as genai
genai.configure(api_key="google-key")

# After (AnyAPI)
from openai import OpenAI
client = OpenAI(
    api_key="anyapi-key",
    base_url="https://api.anyapi.ai/v1"  
)

# Use Gemini models
response = client.chat.completions.create(
    model="gemini-pro",
    messages=[{"role": "user", "content": "Hello"}]
)

Common Integration Patterns

Retry Logic

Implement exponential backoff:
import time
import random

def api_call_with_retry(func, max_retries=3):
    for attempt in range(max_retries):
        try:
            return func()
        except Exception as e:
            if attempt == max_retries - 1:
                raise e
            wait_time = (2 ** attempt) + random.uniform(0, 1)
            time.sleep(wait_time)

Streaming Responses

Handle streaming data efficiently:
def stream_response(messages):
    stream = client.chat.completions.create(
        model="gpt-4o",
        messages=messages,
        stream=True
    )
    
    for chunk in stream:
        if chunk.choices[0].delta.content:
            yield chunk.choices[0].delta.content

Batch Processing

Process multiple requests efficiently:
async def batch_process(requests, batch_size=10):
    results = []
    
    for i in range(0, len(requests), batch_size):
        batch = requests[i:i + batch_size]
        batch_results = await asyncio.gather(
            *[process_single_request(req) for req in batch]
        )
        results.extend(batch_results)
    
    return results

Troubleshooting

Common Issues

Authentication Errors

Error: Invalid API key
Solution: Verify your API key is correct and has the necessary permissions.

Rate Limiting

Error: Rate limit exceeded
Solution: Implement exponential backoff and respect rate limits.

Model Not Found

Error: Model 'invalid-model' not found
Solution: Check the available models list.

Debug Mode

Enable debug logging for troubleshooting:
import logging
logging.basicConfig(level=logging.DEBUG)

# This will log all HTTP requests/responses
client = AnyAPI(api_key="your-key", debug=True)

Health Check

Verify service availability:
def health_check():
    try:
        response = client.chat.completions.create(
            model="gpt-4o-mini",
            messages=[{"role": "user", "content": "ping"}],
            max_tokens=1
        )
        return True
    except Exception:
        return False

Next Steps

Support

Need help with integrations? Our integration team is here to help you get up and running quickly with any supported platform or framework.