Langflow Integration

Langflow is a visual framework for building multi-agent and RAG applications. It provides a drag-and-drop interface to create complex AI workflows without writing code. AnyAPI integrates seamlessly with Langflow, giving you access to all AnyAPI models through Langflow’s visual interface.

Overview

Langflow enables you to:
  • Visual workflow building - Drag-and-drop components to create AI pipelines
  • Multi-agent systems - Build complex agent interactions and coordination
  • RAG applications - Create retrieval-augmented generation workflows
  • Real-time monitoring - Track workflow execution and performance
  • Easy deployment - Deploy workflows as APIs or web applications

Visual Builder

Drag-and-drop interface for AI workflows

Multi-Agent

Build complex agent interaction systems

RAG Pipelines

Create retrieval-augmented generation flows

Real-time Deploy

Deploy workflows as live applications

Installation

Install Langflow and required dependencies:
# Install Langflow
pip install langflow

# Or install with all optional dependencies
pip install langflow[all]

# For development with additional tools
pip install langflow[dev]
Start Langflow:
# Run Langflow server
langflow run

# Or specify custom host and port
langflow run --host 0.0.0.0 --port 7860

Quick Start

Setting Up AnyAPI in Langflow

  1. Open Langflow Interface Navigate to http://localhost:7860 in your browser
  2. Create New Flow Click “New Flow” to start building your workflow
  3. Add AnyAPI Component
    • Drag the “OpenAI” component from the Models section
    • Configure it to use AnyAPI endpoints

Basic Configuration

Configure the OpenAI component to use AnyAPI:
{
  "model": "gpt-4o",
  "openai_api_base": "https://api.anyapi.ai/v1",
  "openai_api_key": "your-anyapi-key",
  "temperature": 0.7,
  "max_tokens": 1000
}

Building Workflows

Simple Chat Flow

Create a basic chat workflow:
  1. Add Components:
    • Text Input (for user messages)
    • OpenAI/AnyAPI LLM (configured with AnyAPI)
    • Text Output (for responses)
  2. Connect Components:
    • Connect Text Input → LLM Input
    • Connect LLM Output → Text Output
  3. Configuration:
    {
      "llm_config": {
        "model": "gpt-4o",
        "temperature": 0.7,
        "system_message": "You are a helpful assistant."
      }
    }
    

RAG Workflow

Build a retrieval-augmented generation pipeline:

Components Configuration:

{
  "text_splitter": {
    "chunk_size": 1000,
    "chunk_overlap": 200,
    "separator": "\n\n"
  },
  "embeddings": {
    "model": "text-embedding-3-large",
    "api_base": "https://api.anyapi.ai/v1",
    "api_key": "your-anyapi-key"
  }
}

Multi-Agent Workflow

Create a multi-agent system with specialized roles:

Agent Configurations:

# Router Agent
router_prompt = """
You are a router agent. Analyze the user query and determine which specialist agents should handle it:
- Research Agent: For factual information gathering
- Analysis Agent: For data analysis and interpretation  
- Writing Agent: For content creation and editing

User Query: {query}
Route to: [agents_needed]
"""

# Research Agent
research_prompt = """
You are a research agent. Your job is to gather accurate, up-to-date information about the topic.
Focus on facts, data, and credible sources.

Research Query: {query}
Findings: [your_research]
"""

# Analysis Agent  
analysis_prompt = """
You are an analysis agent. Your job is to interpret data, identify patterns, and draw insights.
Be analytical and objective in your assessment.

Data to Analyze: {data}
Analysis: [your_analysis]
"""

# Writing Agent
writing_prompt = """
You are a writing agent. Your job is to create clear, engaging, and well-structured content.
Adapt your writing style to the intended audience and purpose.

Content Brief: {brief}
Written Content: [your_content]
"""

Advanced Features

Custom Components

Create reusable custom components for AnyAPI:
from langflow import CustomComponent
from langchain.llms import OpenAI
from langchain.schema import BaseRetriever
import requests

class AnyAPIEmbeddings(CustomComponent):
    display_name = "AnyAPI Embeddings"
    description = "Generate embeddings using AnyAPI"
    
    def build_config(self):
        return {
            "api_key": {
                "display_name": "API Key",
                "password": True,
                "required": True
            },
            "model": {
                "display_name": "Embedding Model",
                "options": [
                    "text-embedding-3-large",
                    "text-embedding-3-small",
                    "text-embedding-ada-002"
                ],
                "value": "text-embedding-3-large"
            },
            "batch_size": {
                "display_name": "Batch Size",
                "value": 100
            }
        }
    
    def build(self, api_key: str, model: str, batch_size: int):
        return AnyAPIEmbeddingsWrapper(
            api_key=api_key,
            model=model,
            batch_size=batch_size
        )

class AnyAPIMultiModal(CustomComponent):
    display_name = "AnyAPI Vision"
    description = "Process images and text with AnyAPI vision models"
    
    def build_config(self):
        return {
            "api_key": {
                "display_name": "API Key", 
                "password": True,
                "required": True
            },
            "model": {
                "display_name": "Vision Model",
                "options": ["gpt-4o", "gpt-4-vision-preview"],
                "value": "gpt-4o"
            },
            "max_tokens": {
                "display_name": "Max Tokens",
                "value": 1000
            }
        }
    
    def build(self, api_key: str, model: str, max_tokens: int):
        return AnyAPIVisionWrapper(
            api_key=api_key,
            model=model,
            max_tokens=max_tokens
        )

Dynamic Workflows

Create workflows that adapt based on input:
class AdaptiveWorkflow(CustomComponent):
    display_name = "Adaptive Workflow"
    description = "Dynamically route tasks based on content analysis"
    
    def build_config(self):
        return {
            "input_analyzer": {
                "display_name": "Input Analyzer",
                "component_type": "LLM"
            },
            "workflow_routes": {
                "display_name": "Workflow Routes",
                "multiline": True,
                "value": """
                creative: Creative writing and ideation
                analytical: Data analysis and research
                technical: Code and technical documentation
                conversational: General chat and Q&A
                """
            }
        }
    
    def build(self, input_analyzer, workflow_routes: str):
        routes = self.parse_routes(workflow_routes)
        
        def route_input(user_input: str):
            # Analyze input to determine best route
            analysis = input_analyzer.predict(
                f"Categorize this input: {user_input}\nCategories: {list(routes.keys())}"
            )
            
            # Extract category from analysis
            category = self.extract_category(analysis, routes.keys())
            
            return {
                "category": category,
                "route": routes.get(category, "conversational"),
                "input": user_input
            }
        
        return route_input

Integration with External APIs

Connect Langflow workflows to external services:
class ExternalAPIComponent(CustomComponent):
    display_name = "External API Connector"
    description = "Connect to external APIs within workflows"
    
    def build_config(self):
        return {
            "api_endpoint": {
                "display_name": "API Endpoint",
                "required": True
            },
            "headers": {
                "display_name": "Headers (JSON)",
                "multiline": True,
                "value": '{"Content-Type": "application/json"}'
            },
            "method": {
                "display_name": "HTTP Method",
                "options": ["GET", "POST", "PUT", "DELETE"],
                "value": "POST"
            }
        }
    
    def build(self, api_endpoint: str, headers: str, method: str):
        import json
        import requests
        
        def make_request(data):
            parsed_headers = json.loads(headers)
            
            response = requests.request(
                method=method,
                url=api_endpoint,
                headers=parsed_headers,
                json=data if method in ["POST", "PUT"] else None,
                params=data if method == "GET" else None
            )
            
            return response.json()
        
        return make_request

Workflow Templates

Content Generation Pipeline

Complete content creation workflow:
# content-generation-template.yaml
name: "Content Generation Pipeline"
description: "End-to-end content creation with research, writing, and review"

components:
  1_topic_input:
    type: "TextInput"
    config:
      placeholder: "Enter content topic..."
  
  2_research_agent:
    type: "AnyAPI_LLM"
    config:
      model: "gpt-4o"
      system_message: "You are a research specialist. Gather comprehensive information about the given topic."
      temperature: 0.3
  
  3_outline_generator:
    type: "AnyAPI_LLM"
    config:
      model: "claude-3-5-sonnet"
      system_message: "Create a detailed outline based on the research provided."
      temperature: 0.5
  
  4_content_writer:
    type: "AnyAPI_LLM"
    config:
      model: "gpt-4o"
      system_message: "Write engaging content following the provided outline and research."
      temperature: 0.7
  
  5_editor_reviewer:
    type: "AnyAPI_LLM"
    config:
      model: "claude-3-5-sonnet"
      system_message: "Review and edit the content for clarity, flow, and engagement."
      temperature: 0.3

connections:
  - from: "1_topic_input.output"
    to: "2_research_agent.input"
  - from: "2_research_agent.output"
    to: "3_outline_generator.input"
  - from: "3_outline_generator.output"
    to: "4_content_writer.context"
  - from: "2_research_agent.output"
    to: "4_content_writer.research"
  - from: "4_content_writer.output"
    to: "5_editor_reviewer.input"

Customer Support Automation

Intelligent customer support workflow:
# customer-support-template.yaml  
name: "Customer Support Automation"
description: "Automated customer support with escalation and knowledge base"

components:
  1_customer_input:
    type: "TextInput"
    config:
      placeholder: "Customer inquiry..."
  
  2_intent_classifier:
    type: "AnyAPI_LLM"
    config:
      model: "gpt-4o-mini"
      system_message: "Classify customer inquiries: billing, technical, general, complaint"
      temperature: 0.1
  
  3_knowledge_base:
    type: "VectorStore"
    config:
      embeddings: "anyapi_embeddings"
      store_type: "FAISS"
  
  4_retriever:
    type: "VectorStoreRetriever"
    config:
      search_type: "similarity"
      k: 3
  
  5_response_generator:
    type: "AnyAPI_LLM"
    config:
      model: "gpt-4o"
      system_message: "Provide helpful customer support responses based on knowledge base context."
      temperature: 0.4
  
  6_escalation_checker:
    type: "AnyAPI_LLM"
    config:
      model: "claude-3-5-sonnet"
      system_message: "Determine if this inquiry requires human escalation."
      temperature: 0.2

routing_logic:
  - condition: "escalation_required == true"
    route: "human_agent"
  - condition: "intent == 'billing'"
    route: "billing_specialist"
  - condition: "intent == 'technical'"
    route: "technical_support"
  - default: "automated_response"

Data Analysis Workflow

Automated data analysis and reporting:
# data-analysis-template.yaml
name: "Data Analysis Workflow"
description: "Automated data analysis with insights and visualization"

components:
  1_data_input:
    type: "FileInput"
    config:
      accepted_types: [".csv", ".xlsx", ".json"]
  
  2_data_processor:
    type: "PythonFunction"
    config:
      function: "process_data"
      imports: ["pandas", "numpy"]
  
  3_statistical_analyzer:
    type: "AnyAPI_LLM"
    config:
      model: "claude-3-5-sonnet"
      system_message: "Analyze data statistics and identify key patterns."
      temperature: 0.3
  
  4_insight_generator:
    type: "AnyAPI_LLM"
    config:
      model: "gpt-4o"
      system_message: "Generate business insights from data analysis."
      temperature: 0.6
  
  5_report_writer:
    type: "AnyAPI_LLM"
    config:
      model: "claude-3-5-sonnet"
      system_message: "Create comprehensive data analysis report."
      temperature: 0.4
  
  6_visualization_generator:
    type: "PythonFunction"
    config:
      function: "create_visualizations"
      imports: ["matplotlib", "seaborn", "plotly"]

Deployment Options

API Deployment

Deploy workflows as REST APIs:
# Deploy as API
langflow run --api-only --port 8000

# Or with specific configuration
langflow run --config api_config.yaml
Access deployed workflow:
import requests

# Call deployed workflow
response = requests.post(
    "http://localhost:8000/api/v1/run/workflow_id",
    json={
        "input": "What is machine learning?",
        "config": {
            "model": "gpt-4o",
            "temperature": 0.7
        }
    }
)

result = response.json()
print(result["output"])

Web Application Deployment

Deploy as interactive web application:
# Deploy with web interface
langflow run --frontend-only

# Or full deployment
langflow run --host 0.0.0.0 --port 7860

Docker Deployment

Deploy using Docker:
# Dockerfile
FROM langflowai/langflow:latest

COPY workflows/ /app/workflows/
COPY config/ /app/config/

ENV ANYAPI_API_KEY=your-api-key
ENV LANGFLOW_CONFIG_DIR=/app/config

EXPOSE 7860

CMD ["langflow", "run", "--host", "0.0.0.0", "--port", "7860"]
# Build and run
docker build -t my-langflow-app .
docker run -p 7860:7860 my-langflow-app

Monitoring and Analytics

Workflow Monitoring

Track workflow performance:
class WorkflowMonitor(CustomComponent):
    display_name = "Workflow Monitor"
    description = "Monitor workflow execution and performance"
    
    def build_config(self):
        return {
            "metrics_endpoint": {
                "display_name": "Metrics Endpoint",
                "value": "http://localhost:8080/metrics"
            },
            "log_level": {
                "display_name": "Log Level",
                "options": ["INFO", "DEBUG", "WARNING"],
                "value": "INFO"
            }
        }
    
    def build(self, metrics_endpoint: str, log_level: str):
        import logging
        import time
        import requests
        
        logging.basicConfig(level=getattr(logging, log_level))
        logger = logging.getLogger(__name__)
        
        def monitor_execution(func):
            def wrapper(*args, **kwargs):
                start_time = time.time()
                
                try:
                    result = func(*args, **kwargs)
                    execution_time = time.time() - start_time
                    
                    # Log success metrics
                    metrics = {
                        "status": "success",
                        "execution_time": execution_time,
                        "timestamp": time.time()
                    }
                    
                    logger.info(f"Workflow executed successfully in {execution_time:.2f}s")
                    
                    # Send to metrics endpoint
                    requests.post(metrics_endpoint, json=metrics)
                    
                    return result
                    
                except Exception as e:
                    execution_time = time.time() - start_time
                    
                    # Log error metrics
                    metrics = {
                        "status": "error",
                        "error": str(e),
                        "execution_time": execution_time,
                        "timestamp": time.time()
                    }
                    
                    logger.error(f"Workflow failed after {execution_time:.2f}s: {e}")
                    
                    # Send to metrics endpoint
                    requests.post(metrics_endpoint, json=metrics)
                    
                    raise e
            
            return wrapper
        
        return monitor_execution

Usage Analytics

Track usage patterns and costs:
class UsageAnalytics(CustomComponent):
    display_name = "Usage Analytics"
    description = "Track usage patterns and costs"
    
    def build_config(self):
        return {
            "analytics_db": {
                "display_name": "Analytics Database",
                "value": "sqlite:///langflow_analytics.db"
            }
        }
    
    def build(self, analytics_db: str):
        import sqlite3
        import json
        from datetime import datetime
        
        # Initialize database
        conn = sqlite3.connect(analytics_db)
        conn.execute("""
            CREATE TABLE IF NOT EXISTS workflow_usage (
                id INTEGER PRIMARY KEY,
                workflow_id TEXT,
                user_id TEXT,
                model_used TEXT,
                tokens_used INTEGER,
                cost REAL,
                execution_time REAL,
                timestamp DATETIME
            )
        """)
        conn.close()
        
        def track_usage(workflow_id, user_id, model_used, tokens_used, cost, execution_time):
            conn = sqlite3.connect(analytics_db)
            conn.execute("""
                INSERT INTO workflow_usage 
                (workflow_id, user_id, model_used, tokens_used, cost, execution_time, timestamp)
                VALUES (?, ?, ?, ?, ?, ?, ?)
            """, (workflow_id, user_id, model_used, tokens_used, cost, execution_time, datetime.now()))
            conn.commit()
            conn.close()
        
        return track_usage

Best Practices

Workflow Design

  1. Modular Components: Break complex workflows into reusable components
  2. Error Handling: Add error handling and fallback mechanisms
  3. Performance: Optimize for speed and resource usage
  4. Testing: Test workflows thoroughly before deployment

Security

  1. API Key Management: Use environment variables for API keys
  2. Input Validation: Validate all user inputs
  3. Access Control: Implement proper authentication and authorization
  4. Audit Logging: Log all workflow executions

Scalability

  1. Caching: Implement caching for frequently accessed data
  2. Load Balancing: Distribute load across multiple instances
  3. Resource Limits: Set appropriate resource limits
  4. Monitoring: Implement comprehensive monitoring

Troubleshooting

Common Issues

Component Connection Errors

Error: Component output type mismatch
Solution: Ensure output types match input requirements

API Authentication Failures

Error: Invalid API key for AnyAPI
Solution: Verify API key configuration in component settings

Memory Issues

Error: Out of memory during workflow execution
Solution: Optimize workflow components and add memory limits

Debug Mode

Enable debug logging:
import logging
logging.basicConfig(level=logging.DEBUG)

# Run Langflow with debug mode
langflow run --debug

Performance Optimization

Monitor and optimize workflow performance:
# Add performance monitoring to components
@performance_monitor
def optimized_component():
    # Component logic here
    pass

Next Steps

For more information about Langflow, visit the official documentation.