Never hit context limits again with smart conversation compressionGot a conversation thatβs too long for your AI model? Donβt panic. Message Transforms automatically compress your prompts to fit any context window while keeping the important stuff intact.Think of it as Marie Kondo for your AI conversations β we keep what sparks joy (the beginning and end) and thoughtfully compress the middle.
Based on actual AI research, not guessworkHereβs the science: Large language models naturally pay less attention to the middle of long sequences. So when we need to squeeze a conversation down, we strategically remove content from the middle while preserving:β¨ The setup (system prompts, initial context)
β¨ The latest context (recent messages, current question)
β¨ The flow (conversation doesnβt feel choppy)Result: Your AI gets the essential context in a package that actually fits.
import requestsurl = "https://api.anyapi.ai/api/v1/chat/completions"headers = { "Authorization": f"Bearer {API_KEY}", "Content-Type": "application/json"}# π― Your massive conversation that normally wouldn't fithuge_conversation = [ {"role": "system", "content": "You are a helpful AI assistant specialized in data analysis."}, {"role": "user", "content": "Let's analyze this quarterly sales data..."}, {"role": "assistant", "content": "I'd be happy to help analyze your sales data..."}, # ... imagine 47 more messages of detailed back-and-forth ... {"role": "user", "content": "Based on everything we've discussed, what's your final recommendation?"}]payload = { "model": "openai/gpt-3.5-turbo", "messages": huge_conversation, "transforms": ["middle-out"] # β¨ Magic happens here}response = requests.post(url, headers=headers, json=payload)result = response.json()# Your model gets a perfectly sized conversation that makes senseprint("β Got a response despite the massive context!")
Keep your support bot working with marathon conversations
Copy
class SupportBot: def __init__(self, api_key): self.api_key = api_key self.conversation_history = [] def handle_customer_message(self, user_message): """Process customer messages with unlimited conversation length""" # Add the new message self.conversation_history.append({ "role": "user", "content": user_message }) # π No need to worry about context limits anymore payload = { "model": "anthropic/claude-3-haiku-20240307", "messages": [ {"role": "system", "content": "You are a helpful customer support agent. Be friendly and solution-focused."}, *self.conversation_history ], "transforms": ["middle-out"], # Handles long conversations automatically "temperature": 0.7 } headers = { "Authorization": f"Bearer {self.api_key}", "Content-Type": "application/json" } response = requests.post( "https://api.anyapi.ai/api/v1/chat/completions", headers=headers, json=payload ) result = response.json() assistant_message = result['choices'][0]['message']['content'] # Add AI response to history self.conversation_history.append({ "role": "assistant", "content": assistant_message }) return assistant_message# π¬ Usage - supports conversations of any lengthsupport_bot = SupportBot(API_KEY)# Even after 100+ messages, it still works perfectlyresponse = support_bot.handle_customer_message( "Can you remind me what we discussed about my refund request?")print(f"Support bot: {response}")
async def analyze_massive_document(document_text, analysis_question): """Analyze documents of any size with follow-up questions""" # π Break document into digestible chunks document_chunks = [document_text[i:i+3000] for i in range(0, len(document_text), 3000)] messages = [ { "role": "system", "content": "You are an expert document analyst. Provide thorough, accurate analysis based on the provided document." } ] # Add all document chunks for i, chunk in enumerate(document_chunks): messages.append({ "role": "user", "content": f"Document part {i+1}: {chunk}" }) # Add the analysis question messages.append({ "role": "user", "content": f"Based on the entire document, please answer: {analysis_question}" }) # π§ Let transforms handle the complexity payload = { "model": "openai/gpt-4", "messages": messages, "transforms": ["middle-out"], # Automatically fits context "max_tokens": 1000 } headers = { "Authorization": f"Bearer {API_KEY}", "Content-Type": "application/json" } async with aiohttp.ClientSession() as session: async with session.post( "https://api.anyapi.ai/api/v1/chat/completions", headers=headers, json=payload ) as response: result = await response.json() return result['choices'][0]['message']['content']# π Analyze a 50-page report without breaking a sweatanalysis = await analyze_massive_document( massive_quarterly_report, "What are the top 3 risks and opportunities identified?")print(f"Analysis complete: {analysis}")
class CreativeWritingBot: def __init__(self, api_key, story_context): self.api_key = api_key self.story_messages = [ {"role": "system", "content": f"You are a creative writing assistant. Story context: {story_context}"} ] def continue_story(self, user_input): """Continue a story regardless of how long it gets""" self.story_messages.append({ "role": "user", "content": user_input }) payload = { "model": "anthropic/claude-3-sonnet-20240229", "messages": self.story_messages, "transforms": ["middle-out"], # Keep the story flowing "temperature": 0.8, # More creative "max_tokens": 500 } headers = { "Authorization": f"Bearer {self.api_key}", "Content-Type": "application/json" } response = requests.post( "https://api.anyapi.ai/api/v1/chat/completions", headers=headers, json=payload ) result = response.json() story_continuation = result['choices'][0]['message']['content'] self.story_messages.append({ "role": "assistant", "content": story_continuation }) return story_continuation def get_story_length(self): """See how epic your story has become""" return len(self.story_messages) - 1 # Subtract system message# βοΈ Write epic novels without context anxietywriter = CreativeWritingBot(API_KEY, "A cyberpunk detective story set in 2087")# Even after 200+ exchanges, the story stays coherentnext_chapter = writer.continue_story( "The detective discovers a hidden message in the quantum data. What does it reveal?")print(f"Story continues: {next_chapter}")print(f"Story length: {writer.get_story_length()} exchanges")
def handle_critical_conversation(messages): """For conversations where every detail matters""" payload = { "model": "anthropic/claude-3-opus-20240229", # High-context model "messages": messages, "transforms": [], # π« No compression - preserve everything "max_tokens": 2000 } # This will fail if messages exceed context, but that's intentional # Better to fail than lose critical information return payload# πΌ Use for legal analysis, medical consultations, technical debuggingcritical_response = handle_critical_conversation(detailed_legal_messages)
def optimize_message_history(messages, max_history=100): """Keep message history manageable""" if len(messages) > max_history: # Keep system message + recent messages system_messages = [msg for msg in messages if msg["role"] == "system"] recent_messages = messages[-(max_history-len(system_messages)):] messages = system_messages + recent_messages return messages
Model Selection:
Copy
def choose_optimal_model(estimated_tokens): """Pick the right model for your context size""" if estimated_tokens < 4000: return "openai/gpt-3.5-turbo" # Fast and cheap elif estimated_tokens < 8000: return "openai/gpt-4o-mini" # Good balance elif estimated_tokens < 32000: return "openai/gpt-4" # High context else: return "anthropic/claude-3-opus-20240229" # Maximum context
Problem: Responses seem disconnected or miss important context Solution: Check if crucial information is in the middle of your conversation. Consider restructuring or using a higher-context model.Problem: Transform isnβt being applied when expected Solution: Verify your conversation actually exceeds the modelβs context limit. Transforms only activate when needed.Problem: Quality degradation with transforms Solution: Test different models or consider manual conversation summarization for critical use cases.
Message Transforms are your safety net for long conversations. They keep your AI applications running smoothly without forcing you to micromanage context windows or abandon complex interactions.Key benefits:
π Never hit context limits - Your conversations can go on forever
π§ Smart compression - Keeps the important stuff, compresses the rest
β‘ Zero configuration - Works automatically when you need it
π° Cost effective - Use smaller, cheaper models for longer conversations
When to use them:
β Long customer support sessions
β Document analysis with follow-ups
β Creative writing projects
β Educational conversations
β Critical analysis where every detail matters
Ready to break free from context limits? Add "transforms": ["middle-out"] to your next long conversation and watch the magic happen.Never lose a conversation to context limits again! π―